skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shah, Maharshi B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is a rapid trend in various industries to replace the metallic pipes by nonmetallic ones. This is due to the certain properties, such as high strength, lightweight, resilience to corrosion, and low cost of maintenance for nonmetallic pipes. Despite the abovementioned advantages, nonmetallic pipes are still affected by issues, such as erosion, defects, damages, cracks, holes, delamination, and changes in the thickness. These issues are typically caused due to the manufacturing process, type of carried fluid composition, and flow rate. If not examined well, these issues could lead to disastrous failures caused by leakages and bursting of the pipes. To prevent such major failures, it is extremely important to test the pipes periodically for an accurate estimation of their thickness profile. In this article, we propose a nondestructive testing (NDT) technique, based on near-field microwave holography, for identifying the fluid carried by a nonmetallic pipe and estimating the pipe's thickness profile. Identifying the carried fluid helps improve the thickness profile estimation. The performance of the proposed techniques will be demonstrated via simulations and experiments. 
    more » « less
  2. In oil, gas, transportation, and construction industries non-metallic pipes are rapidly replacing metallic pipes. Thus, it is crucial to have a reliable and robust nondestructive testing (NDT) technique to monitor the variation in the thickness profile of such pipes. Here, we propose a technique based on the near-field microwave holography and standardized minimum norm (SMN) to reconstruct the thickness profile of these pipes. We will also identify the fluid carried within the pipe which improves the thickness profile estimation process. The proposed methods are validated via simulation and experimental results. 
    more » « less